Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(5-1): 054102, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37328988

RESUMO

For stochastic lattice models in spatially uniform nonequilibrium steady states, an effective thermodynamic temperature T and chemical potential µ can be defined via coexistence with heat and particle reservoirs. We verify that the probability distribution P_{N} for the number of particles in the driven lattice gas with nearest-neighbor exclusion in contact with a particle reservoir with dimensionless chemical potential µ^{*} possesses a large-deviation form in the thermodynamic limit. This implies that the thermodynamic properties determined in isolation (fixed particle number representation) and in contact with a particle reservoir (fixed dimensionless chemical potential representation) are equal. We refer to this as description equivalence. This finding motivates investigation of whether the effective intensive parameters so obtained depend on the nature of the exchange between system and reservoir. For example, a stochastic particle reservoir is usually taken to insert or remove a single particle in each exchange, but one may also consider a reservoir that inserts or removes a pair of particles in each event. In equilibrium, equivalence of pair and single-particle reservoirs is guaranteed by the canonical form of the probability distribution on configuration space. Remarkably, this equivalence is violated in nonequilibrium steady states, limiting the generality of steady-state thermodynamics based on intensive variables.


Assuntos
Temperatura Alta , Termodinâmica , Probabilidade
2.
Phys Rev E ; 107(2-1): 024104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932526

RESUMO

We consider two-species random sequential adsorption (RSA) in which species A and B adsorb randomly on a lattice with the restriction that opposite species cannot occupy nearest-neighbor sites. When the probability x_{A} of choosing an A particle for an adsorption trial reaches a critical value 0.626441(1), the A species percolates and/or the blocked sites X (those with at least one A and one B nearest neighbor) percolate. Analysis of the size-distribution exponent τ, the wrapping probabilities, and the excess cluster number shows that the percolation transition is consistent with that of ordinary percolation. We obtain an exact result for the low x_{B}=1-x_{A} jamming behavior: θ_{A}=1-x_{B}+b_{2}x_{B}^{2}+O(x_{B}^{3}), Î¸_{B}=x_{B}/(z+1)+O(x_{B}^{2}) for a z-coordinated lattice, where θ_{A} and θ_{B} are, respectively, the saturation coverages of species A and B. We also show how differences between wrapping probabilities of A and X clusters, as well as differences in the number of A and X clusters, can be used to find the percolation transition point accurately.

3.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446570

RESUMO

Recent experimental work on zebrafish has shown the in vivo activity of photoreceptors and horizontal cells (HCs) as a function of the stimulus spectrum, highlighting the appearance of chromatic-opponent signals at their first synaptic connection. Altogether with the observed lack of excitatory intercone connections, these findings suggest that the mechanism yielding early color opponency in zebrafish is dominated by inhibitory feedback. We propose a neuronal population model based on zebrafish retinal circuitry to investigate whether networks with predominantly inhibitory feedback are more advantageous in encoding chromatic information than networks with mixed excitatory and inhibitory mechanisms. We show that networks with dominant inhibitory feedback exhibit a unique and reliable encoding of chromatic information. In contrast, this property is not guaranteed in networks with strong excitatory intercone connections, exhibiting bistability. These findings provide a theoretical explanation for the absence of excitatory intercone couplings in zebrafish color circuits. In addition, our study shows that these networks, with only one type of horizontal cell, are suitable to encode most of the variance from the zebrafish environment. However, at least two successive layers of inhibitory neurons are needed to reach the optimum. Finally, we contrast the encoding performance of networks with different opsin sensitivities, showing an improvement of only 13% compared with zebrafish, suggesting that the zebrafish retina is adapted to encode color information from its habitat efficiently.


Assuntos
Retina , Peixe-Zebra , Animais , Retina/fisiologia , Células Fotorreceptoras , Neurônios , Percepção de Cores/fisiologia
4.
Phys Rev E ; 104(4-1): 044413, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781575

RESUMO

Mutations not only alter allele frequencies in a genetic pool but may also determine the fate of an evolutionary process. Here we study which allele fixes in a one-step, one-way model including the wild type and two adaptive mutations. We study the effect of the four basic evolutionary mechanisms-genetic drift, natural selection, mutation, and gene flow-on mutant fixation and its kinetics. Determining which allele is more likely to fix is not simply a question of comparing fitnesses and mutation rates. For instance, if the allele of interest is less fit than the other, then not only must it have a greater mutation rate, but also its mutation rate must exceed a specific threshold for it to prevail. We find exact expressions for such conditions. Our conclusions are based on the mathematical description of two extreme but important regimes, as well as on simulations.


Assuntos
Modelos Genéticos , Seleção Genética , Alelos , Evolução Biológica , Mutação
5.
Phys Rev E ; 104(6-1): 064135, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030961

RESUMO

An investigation of the two-dimensional Widom-Rowlinson lattice gas under an applied drive uncovered a remarkable nonequilibrium steady state in which uniform stripes (reminiscent of an equilibrium lamellar phase) form perpendicular to the drive direction [R. Dickman and R. K. P. Zia, Phys. Rev. E 97, 062126 (2018)10.1103/PhysRevE.97.062126]. Here we study this model at low particle densities in two and three dimensions, where we find a disordered phase with a characteristic length scale (a "microemulsion") along the drive direction. We develop a continuum theory of this disordered phase to derive a coarse-grained field-theoretic action for the nonequilibrium dynamics. The action has the form of two coupled driven diffusive systems with different characteristic velocities, generated by an interplay between the particle repulsion and the drive. We then show how fluctuation corrections in the field theory may generate the characteristic features of the microemulsion phase, including a peak in the static structure factor corresponding to the characteristic length scale. This work lays the foundation for understanding the stripe phenomenon more generally.

6.
Phys Rev E ; 101(5-1): 052138, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575275

RESUMO

We study the Ising model on the square lattice (Z^{2}) and show, via numerical simulation, that allowing interactions between spins separated by distances 1 and m (two ranges), the critical temperature, T_{c}(m), converges monotonically to the critical temperature of the Ising model on Z^{4} as m→∞. Only interactions between spins located in directions parallel to each coordinate axis are considered. We also simulated the model with interactions between spins at distances of 1, m, and u (three ranges), with u a multiple of m; in this case our results indicate that T_{c}(m,u) converges to the critical temperature of the model on Z^{6}. For percolation, analogous results were proven for the critical probability p_{c} [B. N. B. de Lima, R. P. Sanchis, and R. W. C. Silva, Stochast. Process. Appl. 121, 2043 (2011)STOPB70304-414910.1016/j.spa.2011.05.009].

7.
Phys Rev E ; 100(2-1): 022109, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574678

RESUMO

We study an associating lattice gas (ALG) using Monte Carlo simulation on the triangular lattice and semianalytical solutions on Husimi lattices. In this model, the molecules have an orientational degree of freedom and the interactions depend on the relative orientations of nearest-neighbor molecules, mimicking the formation of hydrogen bonds. We focus on the transition between the high-density liquid (HDL) phase and the isotropic phase in the limit of full occupancy, corresponding to chemical potential µâ†’∞, which has not yet been studied systematically. Simulations yield a continuous phase transition at τ_{c}=k_{B}T_{c}/γ=0.4763(1) (where -γ is the bond energy) between the low-temperature HDL phase, with a nonvanishing mean orientation of the molecules, and the high-temperature isotropic phase. Results for critical exponents and the Binder cumulant indicate that the transition belongs to the three-state Potts model universality class, even though the ALG Hamiltonian does not have the full permutation symmetry of the Potts model. In contrast with simulation, the Husimi lattice analyses furnish a discontinuous phase transition, characterized by a discontinuity of the nematic order parameter. The transition temperatures (τ_{c}=0.51403 and 0.51207 for trees built with triangles and hexagons, respectively) are slightly higher than that found via simulation. Since the Husimi lattice studies show that the ALG phase diagram features a discontinuous isotropic-HDL line for finite µ, three possible scenarios arise for the triangular lattice. The first is that in the limit µâ†’∞ the first-order line ends in a critical point; the second is a change in the nature of the transition at some finite chemical potential; the third is that the entire line is one of continuous phase transitions. Results from other ALG models and the fact that mean-field approximations show a discontinuous phase transition for the three-state Potts model (known to possess a continuous transition) lends some weight to the third alternative.

8.
Phys Rev E ; 99(3-1): 032137, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999400

RESUMO

Defining an entropy function out of equilibrium is an outstanding challenge. For stochastic lattice models in spatially uniform nonequilibrium steady states, definitions of temperature T and chemical potential µ have been verified using coexistence with heat and particle reservoirs. For an appropriate choice of exchange rates, T and µ satisfy the zeroth law, marking an important step in the development of steady-state thermodynamics. These results suggest that an associated steady-state entropy S_{th} be constructed via thermodynamic integration, using relations such as (∂S/∂E)_{V,N}=1/T, ensuring that derivatives of S_{th} with respect to energy and particle number yield the expected intensive parameters. We determine via direct calculation the stationary nonequilibrium probability distribution of the driven lattice gas with nearest-neighbor exclusion, the Katz-Lebowitz-Spohn driven lattice gas, and a two-temperature Ising model so that we may evaluate the Shannon entropy S_{S} as well as S_{th} defined above. Although the two entropies are identical in equilibrium (as expected), they differ out of equilibrium; for small values of the drive, D, we find |S_{S}-S_{th}|∝D^{2}, as expected on the basis of symmetry. We verify that S_{th} is not a state function: changes ΔS_{th} depend not only on the initial and final points, but also on the path in parameter space. The inequivalence of S_{S} and S_{th} implies that derivatives of S_{S} are not predictive of coexistence. In other words, a nonequilibrium steady state is not determined by maximizing the Shannon entropy. Our results cast doubt on the possibility of defining a state function that plays the role of a thermodynamic entropy for nonequilibrium steady states.

9.
Phys Rev E ; 97(6-1): 062126, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011593

RESUMO

In the Widom-Rowlinson lattice gas, two particle species (A, B) diffuse freely via particle-hole exchange, subject to both on-site exclusion and prohibition of A-B nearest-neighbor pairs. As an athermal system, the overall densities are the only control parameters. As the densities increase, an entropically driven phase transition occurs, leading to ordered states with A- and B-rich domains separated by hole-rich interfaces. Using Monte Carlo simulations, we analyze the effect of imposing a drive on this system, biasing particle moves along one direction. Our study parallels that for a driven Ising lattice gas, the Katz-Lebowitz-Spohn (KLS) model, which displays atypical collective behavior, e.g., structure factors with discontinuity singularities and ordered states with domains only parallel to the drive. Here, other interesting features emerge, including structure factors with kink singularities (best fitted to |q|), maxima at nonvanishing wave-vector values, oscillating correlation functions, and ordering into multiple striped domains perpendicular to the drive, with a preferred wavelength depending on density and drive intensity. Moreover, the (hole-rich) interfaces between the domains are statistically rough (whether driven or not), in sharp contrast with those in the KLS model, in which the drive suppresses interfacial roughness. Defining an order parameter that accounts for the emergence of multistripe states, we map out the phase diagram in the density-drive plane and present preliminary evidence for a critical phase in this driven lattice gas.

10.
PLoS One ; 12(8): e0182672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806781

RESUMO

According to the competitive exclusion principle, in a finite ecosystem, extinction occurs naturally when two or more species compete for the same resources. An important question that arises is: when coexistence is not possible, which mechanisms confer an advantage to a given species against the other(s)? In general, it is expected that the species with the higher reproductive/death ratio will win the competition, but other mechanisms, such as asymmetry in interspecific competition or unequal diffusion rates, have been found to change this scenario dramatically. In this work, we examine competitive advantage in the context of quasi-neutral population models, including stochastic models with spatial structure as well as macroscopic (mean-field) descriptions. We employ a two-species contact process in which the "biological clock" of one species is a factor of α slower than that of the other species. Our results provide new insights into how stochasticity and competition interact to determine extinction in finite spatial systems. We find that a species with a slower biological clock has an advantage if resources are limited, winning the competition against a species with a faster clock, in relatively small systems. Periodic or stochastic environmental variations also favor the slower species, even in much larger systems.


Assuntos
Ecossistema , Simulação por Computador , Modelos Teóricos , Dinâmica Populacional , Probabilidade , Processos Estocásticos
11.
Phys Rev E ; 95(2-1): 022106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297966

RESUMO

We consider a modified Nagel-Schreckenberg (NS) model in which drivers do not decelerate if their speed is smaller than the headway (number of empty sites to the car ahead). (In the original NS model, such a reduction in speed occurs with probability p, independent of the headway, as long as the current speed is greater than zero.) In the modified model the free-flow state (with all vehicles traveling at the maximum speed, v_{max}) is absorbing for densities ρ smaller than a critical value ρ_{c}=1/(v_{max}+2). The phase diagram in the ρ-p plane is reentrant: for densities in the range ρ_{c,<}<ρ<ρ_{c}, both small and large values of p favor free flow, while for intermediate values, a nonzero fraction of vehicles have speeds

12.
Phys Rev E ; 93(3): 032143, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078328

RESUMO

We investigate how a clean continuous phase transition is affected by spatiotemporal disorder, i.e., by an external perturbation that fluctuates in both space and time. We derive a generalization of the Harris criterion for the stability of the clean critical behavior in terms of the space-time correlation function of the external perturbation. As an application, we consider diffusive disorder, i.e., an external perturbation governed by diffusive dynamics, and its effects on a variety of equilibrium and nonequilibrium critical points. We also discuss the relation between diffusive disorder and diffusive dynamical degrees of freedom in the example of model C of the Hohenberg-Halperin classification and comment on Griffiths singularities.

13.
Artigo em Inglês | MEDLINE | ID: mdl-26382328

RESUMO

We examine fluctuations in particle density in the restricted-height, conserved stochastic sandpile (CSS). In this and related models, the global particle density is a temperaturelike control parameter. Thus local fluctuations in this density correspond to disorder; if this disorder is a relevant perturbation of directed percolation (DP), then the CSS should exhibit non-DP critical behavior. We analyze the scaling of the variance Vℓ of the number of particles in regions of ℓd sites in extensive simulations of the quasistationary state in one and two dimensions. Our results, combined with a Harris-like argument for the relevance of particle-density fluctuations, strongly suggest that conserved stochastic sandpiles belong to a universality class distinct from that of DP.

14.
Sci Rep ; 5: 14451, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26399323

RESUMO

We study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [ Front. in Neuroinform., 4 (2010) 8] to model functional brain connectivity, using extensive simulations and quenched mean-field theory (QMF), focusing on structures with a connection probability that decays exponentially with the level index. Such networks can be embedded in two-dimensional Euclidean space. We explore the dynamic behavior of the contact process (CP) and threshold models on networks of this kind, including hierarchical trees. While in the small-world networks originally proposed to model brain connectivity, the topological heterogeneities are not strong enough to induce deviations from mean-field behavior, we show that a Griffiths phase can emerge under reduced connection probabilities, approaching the percolation threshold. In this case the topological dimension of the networks is finite, and extended regions of bursty, power-law dynamics are observed. Localization in the steady state is also shown via QMF. We investigate the effects of link asymmetry and coupling disorder, and show that localization can occur even in small-world networks with high connectivity in case of link disorder.

15.
Am J Phys ; 83(5): 468-474, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-32255812

RESUMO

We discuss a lattice model of vector-mediated transmission of a disease to illustrate how simulations can be applied in epidemiology. The population consists of two species, human hosts and vectors, which contract the disease from one another. Hosts are sedentary, while vectors (mosquitoes) diffuse in space. Examples of such diseases are malaria, dengue fever, and Pierce's disease in vineyards. The model exhibits a phase transition between an absorbing (infection free) phase and an active one as parameters such as infection rates and vector density are varied.

16.
Artigo em Inglês | MEDLINE | ID: mdl-25314408

RESUMO

We study the two-species symbiotic contact process, recently proposed by de Oliveira, Santos, and Dickman [Phys. Rev. E 86, 011121 (2012)]. In this model, each site of a lattice may be vacant or host single individuals of species A and/or B. Individuals at sites with both species present interact in a symbiotic manner, having a reduced death rate µ<1. Otherwise, the dynamics follows the rules of the basic contact process, with individuals reproducing to vacant neighbor sites at rate λ and dying at a rate of unity. We determine the full phase diagram in the λ-µ plane in one and two dimensions by means of exact numerical quasistationary distributions, cluster approximations, and Monte Carlo simulations. We also study the effects of asymmetric creation rates and diffusion of individuals. In two dimensions, for sufficiently strong symbiosis (i.e., small µ), the absorbing-state phase transition becomes discontinuous for diffusion rates D within a certain range. We report preliminary results on the critical surface and tricritical line in the λ-µ-D space. Our results raise the possibility that strongly symbiotic associations of mobile species may be vulnerable to sudden extinction under increasingly adverse conditions.


Assuntos
Modelos Teóricos , Difusão , Método de Monte Carlo , Probabilidade , Simbiose
17.
Artigo em Inglês | MEDLINE | ID: mdl-24730817

RESUMO

We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential µ, and an effective temperature Te, are possible. µ and Te are determined via coexistence, i.e., zero flux of particles and energy between the driven system and a reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas both µ and Te need to be defined. We show analytically that in this case the zeroth law is violated for Metropolis exchange rates, and determine the size of the violations numerically. The zeroth law appears to be violated for generic exchange rates. Remarkably, the system-reservoir coupling proposed by Sasa and Tasaki [J. Stat. Phys. 125, 125 (2006)] is free of inconsistencies, and the zeroth law holds. This is because the rate depends only on the state of the donor system, and is independent of that of the acceptor.

18.
Artigo em Inglês | MEDLINE | ID: mdl-25615060

RESUMO

To be useful, steady-state thermodynamics (SST) must be self-consistent and have predictive value. Consistency of SST was recently verified for driven lattice gases under global weak exchange. Here I verify consistency of SST under local (pointwise) exchange, but only in the limit of a vanishing exchange rate; for a finite exchange rate the coexisting systems have different chemical potentials. I consider the lattice gas with nearest-neighbor exclusion on the square lattice, with nearest-neighbor hopping, and with hopping to both nearest and next-nearest neighbors. I show that SST does not predict the coexisting densities under a nonuniform drive or in the presence of a nonuniform density provoked by a hard wall or nonuniform transition rates. The steady-state chemical potential profile is, moreover, nonuniform at coexistence, contrary to the basic principles of thermodynamics. Finally, I discuss examples of a pair of systems possessing identical steady states but which do not coexist when placed in contact. The results of these studies confirm the validity of SST for coexistence between spatially uniform systems but cast serious doubt on its consistency and predictive value in systems with a finite rate of particle exchange between coexisting regions exhibiting a nonuniform particle density.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 011121, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23005382

RESUMO

We study a contact process (CP) with two species that interact in a symbiotic manner. In our model, each site of a lattice may be vacant or host individuals of species A and/or B; multiple occupancy by the same species is prohibited. Symbiosis is represented by a reduced death rate µ<1 for individuals at sites with both species present. Otherwise, the dynamics is that of the basic CP, with creation (at vacant neighbor sites) at rate λ and death of (isolated) individuals at a rate of unity. Mean-field theory and Monte Carlo simulation show that the critical creation rate λ(c)(µ) is a decreasing function of µ, even though a single-species population must go extinct for λ<λ(c) (1), the critical point of the basic CP. Extensive simulations yield results for critical behavior that are compatible with the directed percolation (DP) universality class, but with unusually strong corrections to scaling. A field-theoretic argument supports the conclusion of DP critical behavior. We obtain similar results for a CP with creation at second-neighbor sites and enhanced survival at first neighbors in the form of an annihilation rate that decreases with the number of occupied first neighbors.


Assuntos
Coeficiente de Natalidade , Modelos Estatísticos , Mortalidade , Dinâmica Populacional , Simbiose/fisiologia , Animais , Simulação por Computador , Humanos
20.
Int J Radiat Biol ; 88(8): 592-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22587665

RESUMO

PURPOSE: To implement quantitative models of the Radiation-Induced Bystander Effects (RIBE) based on cellular excitation at a rate proportional to the concentration of signal molecules (called signals here) released by irradiated cells. Clonogenic cell survival and transformation frequency as a function of rescue time and dose were considered. MATERIALS AND METHODS: Our first stochastic model was based on the hypothesis that chemical signals are released into the extracellular medium by irradiated cells. These signals act on unirradiated cells switching them from the healthy to the dead state at rate R(t). We extended this model including a non-lethal transformed state in order to describe clonogenic cell survival and transformation frequency as a function of the number of alpha particles. RESULTS: The first stochastic model was applied to an experiment on human keratinocyte (HaCat) cells yielding the half-life of at least one signal among the ensemble of possible candidates to trigger cell death in this cell culture. The second model yielded good fits to the data on clonogenic cell survival and transformation frequency in microbeam experiments with mouse embryo (C3H10T(1/2)) cells (Sawant et al. 2001a, 2001b). CONCLUSIONS: The fit of the first stochastic model to HaCat cell survival yielded a half-life of the order of minutes for possible signal candidates. This model also furnished the variance of the fraction of surviving cells.


Assuntos
Efeito Espectador/efeitos da radiação , Modelos Biológicos , Animais , Sobrevivência Celular/efeitos da radiação , Meia-Vida , Humanos , Queratinócitos/citologia , Cinética , Camundongos , Transdução de Sinais/efeitos da radiação , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...